Cực trị của hàm số: Chi tiết lý thuyết và các dạng bài tập thường gặp

Cách tính cực trị của hàm số

Qua bài viết này mvatoi.com.vn xin chia sẻ với các bạn thông tin và kiến thức về Cách tính cực trị của hàm số hot nhất được tổng hợp bởi M & Tôi

cực trị của hàm số là một trong những phần quan trọng thuộc kiến ​​thức ại số ở cấp 3. ể ể ể ể ể ể ể ể ể ể ể ụnng n and ànng n and it goes to ki ki n and ụnng n and ànng n and it goes to ki n and ụnd dụnng n and ànng n and ànng n and and n and ụnng n and ànng n and it goes to ki n and ụnd dụnng n and ànng ki n and go. . mono đã tổng hợp tất cả khái niệm và cách tìm cực trị của các dạng hàm số thường gặp ngay dưới dây.

lý thuyết cực trị của hàm số

cực trị của hàm số là điểm có giá trị lớn nhất hoặc nhỏ nhất so với xung quanh mà hàm số có thể đạt được. trong hình học, nó biểu diễn khoảng cách lớn nhất hoặc nhỏ nhất từ ​​​​điểm này sang điểm kia. Đây chính là khái niệm cơ bản về cực trị của hàm số.

Lý thuyết về cực trị của hàm số. (Ảnh: Sưu tầm Internet)

Định nghĩa

giả sử hàm số f xác định trên k (k ⊂ ℝ)x0 ∈ k.

< f(x0), ∀ x ∈ (a;b) {x0}. khi đó f(x0) được gọi là giá trị cực đại của hàm số f.

> f(x0), ∀ x ∈ (a;b) {x0}. khi đó f(x0) được gọi là giá trị cực tiểu của hàm số f.

một số lưu ý chung:

  1. Điểm cực đại (cực tiểu) x0 được gọi chung là điểm cực trị. giá trị cực đại (cực tiểu) f(x0) của hàm số được gọi chung là cực trị. hàm số có thể đạt cực đại hoặc cực tiểu tại nhiều điểm trên tập hợp k.

  2. nói chung, giá trị cực đại (cực tiểu) f(x0) không phải là giá trị lớn nhất (nhỏ nhất) của hàm số f trên tập k; f(x0) chỉ là giá trị lớn nhất (nhỏ nhất) của hàm số f trên một khoảng (a;b) chứa x0.

    Hình minh họa cho điểm cực đại và cực tiểu của hàm số. (Ảnh: Verbalearn.com)

    Điều kiện cần và đủ để hàm số đạt cực trị

    ể MộT Hàm sốcc cr tểt cực trị tại 1 điểm thì hàm số cần thỏa mén các yếu tố sau (bao gồm: điều kiện cần và điều kiện ủ).

    Điều kiện cần

    Định lý 1

    giả sử hàm số f đạt cực trị tại điểm x0. khi đó, nếu f có đạo hàm tại điểm x0 thì f’(x0) = 0.

    một số lưu ý chung:

    1. Điều ngược lại có thể không đúng. Đạo hàm f’ có thể bằng 0 tại điểm x0 nhưng hàm số f không đạt cực trị tại điểm x0.

      Điều kiện đủ

      Định lý 2

      nếu f’(x) đổi dấu từ âm sang dương khi x đi qua điểm x0 (theo chiều tăng) thì hàm số đạt cực tiểu tại x0.

      nếu f’(x) đổi dấu từ dương sang âm khi x đi qua điểm x0 (theo chiều tăng) thì hàm số đạt cực đại tại x0.

      Định lý 3

      giả sử hàm số f có đạo hàm cấp một trên khoảng (a;b) chứa điểm x0, f’(x0) = 0 và f có đạo hàm cấp hai khác 0 điểm

      • nếu f’’(x0) < 0 thì hàm số f đạt cực đại tại điểm x0.

      • nếu f’’(x0) > 0 thì hàm số f đạt cực tiểu tại điểm x0.

        cách tìm cực trị của một số hàm số thường gặp

        mỗi hàm số đều có một tính chất và cách tìm cực trị khác nhau. ngay sau đây monkey sẽ giới thiệu đến bạn cách tìm cực trị của 5 dạng hàm số thường gặp trong các đề thi nhất.

        cực trị của hàm số bậc 2

        hàm số bậc 2 có dạng: y = ax2 + bx + c (a ≠ 0) với miền xác định là d = r. ta có: y’ = 2ax + b.

        • y’ đổi dấu khi x qua x0 = -b/2a

        • hàm số đạt cực trị tại x0 = -b/2a

          cực trị của hàm số bậc 3

          hàm số bậc 3 có dạng: y = ax3 + bx2 + cx + d (a ≠ 0) với miền xác định là d = r. ta có: y’ = 3ax2 + 2bx + c → Δ’ = b2 – 3ac.

          • Δ’ ≤ 0 : y’ không đổi dấu → hàm số không có cực trị

          • Δ’ > 0 : y’ đổi dấu 2 lần → hàm số có hai cực trị (1 cĐ và 1 ct)

            cách tìm đường thẳng đi qua hai cực trị của hàm số bậc ba:

            ta có thể phân tích : y = f(x) = (ax + b)f ‘(x) + cx + d bằng cách chia đa thức f(x) cho đa thức f ‘(x).

            giả sử hàm số đạt cực trị tại x1 và x2

            ta co: f(x1) = (ax1 + b)f'(x1) + cx1 + d → f(x1) = cx1 + d vì f'(x1) = 0

            tương tự: f(x2) = cx2 + d vì f’(x2) = 0

            kết luận: Đường thẳng qua hai điểm cực trị có phương trình: y = cx + d

            Cách tìm cực trị của một số hàm số thường gặp. (Ảnh: Sưu tầm Internet)

            cực trị của hàm số bậc 4 (hàm trùng phương)

            hàm số trùng phương có dạng: y = ax4 + bx2 + c (a ≠ 0) với miền xác định là d = r. ta có: y’ = 4ax^3 + 2bx = 2x(2ax^2 + b) và y’ = 0 x = 0 2ax^2 + b = 0 x = 0 x62 = -b/2a.

            • khi -b/2a ≤ 0 <=> b/2a ≥ 0 thì y’ chỉ đổi dấu 1 lần khi x đi qua x0 = 0 → hàm số đạt cực trị tại xo = 0

            • khi -b/2a > 0 <=> b/2a < 0 thì y’ đổi dấu 3 lần → hàm số có 3 cực trị

              cực trị của hàm số lượng giác

              phương pháp tìm cực trị của hàm số lượng giác như sau:

              • bước 1: tìm miền xác định của hàm số.

              • bước 2: tính đạo hàm y’ = f’(x), giải phương trình y’=0, giả sử có nghiệm x=x0.

              • bước 3: khi đó ta tìm đạo hàm y’’.

                • tính y’’(x0) rồi đưa ra kết luận dựa vào định lý 2.

                  cực trị của hàm số logarit

                  chúng ta cần phải thực hiện theo các bước sau:

                  • bước 1: tìm miền xác định của hàm số.

                  • bước 2: tính đạo hàm y’, rồi giải phương trình y’=0, giả sử có nghiệm x=x0.

                  • bước 3: xét hai khả năng:

                    • tìm đạo hàm y’’.

                    • tính y’’(x0) rồi đưa ra kết luận dựa vào định lý 3.

                    • nếu không xét được dấu của y’: khi đó:

                      xem thêm: tổng quan chi tiết các lý thuyết về hàm số bậc 2 và những dạng bài toán vận dụng thường gặp

                      các dạng bài tập vận dụng thường gặp

                      vì các bài toán về cực trị xuất hiện thường xuyên trong các đề thi thpt quốc gia hằng năm. nắm bắt ược tình hình chung, mono đã tổng hợp 3 dạng bài toán thường gặp liên quan ến cực trị của hàm số, giúp bạn hàn thng ể

                      dạng 1: tìm cực trị của hàm số

                      capsule 1:

                      • bước 1: tìm tập xác định của hàm số.

                      • bước 2: tính f'(x). tìm các điểm tại đó f'(x)bằng 0 hoặc f'(x) không xác định.

                      • bước 3: lập bảng biến thiên.

                      • bước 4: từ bảng biến thiên suy ra các điểm cực trị.

                        cup 2:

                        • bước 1: tìm tập xác định của hàm số.

                        • bước 2: tính f'(x). giải phương trình f'(x)và ký hiệu xi (i=1,2,3,…)là các nghiệm của nó.

                        • bước 3: tính f”(x) và f”(xi ).

                        • bước 4: dựa vào dấu của f”(xi )suy ra tính chất cực trị của điểm xi.

                          ví dụ minh họa:

                          tìm cực trị của hàm số y = 2×3 – 6x + 2.

                          hướng dẫn giải:

                          tập xác định d = r.

                          tính y’ = 6x^2 – 6. cho y’= 0 ⇔ 6×2 – 6 = 0 ⇔ x = ±1.

                          bảng biến thiên:

                          vậy hàm số đạt cực đại tại x = – 1, y = 6 và hàm số đạt cực tiểu tại x = 1,y = -2.

                          Một số dạng bài tập về cực trị của hàm số thường gặp. (Ảnh: Sưu tầm Internet)

                          dạng 2: tìm tham số m để hàm số đạt cực trị tại một điểm

                          phương pháp giải:

                          trong dạng toán này ta chỉ xét trường hợp hàm số có đạo hàm tại x0. khi đó để giải bài toán này, ta tiến hành theo hai bước.

                          • bước 1: điều kiện cần ể hàm số ạt cực trị tại x0 là y ‘(x0) = 0, từ điều ện này ta ợc gi ư c số .

                            In toá toá toá -han toá -han toán toán aá khong?

                            ví dụ minh họa:

                            cho hàm số y = x^3 – 3mx^2 +(m^2 – 1)x + 2, m là tham số thực. tìm tất cả các giá trị của m để hàm số đã cho đạt cực tiểu tại x = 2.

                            hướng dẫn giải:

                            tập xác định d = r. tính y’=3x^2 – 6mx + m^2 – 1; y” = 6x – 6m.

                            ham số đã cho đạt cực tiểu tại x = 2 →

                            ⇔ meter = 1.

                            dạng 3: biện luận theo m số cực trị của hàm số

                            Đối với cực trị của hàm số bậc ba

                            cho hàm số y = ax^3 + bx^2 + cx + d, a ≠ 0. khi đó, ta có: y’ = 0 ⇔ 3ax^2 + 2bx + c = 0 (1) ; Δ’y’ = b^2 – 3ac.

                            • phương trình (1) vô nghiệm hoặc có nghiệm kép thì hàm số đã cho không có cực trị.

                            • hàm số bậc 3 không có cực trị ⇔ b^2 – 3ac ≤ 0

                            • phương trình (1) có hai nghiệm phân biệt thì hàm số đã cho có 2 cực trị.

                            • hàm số bậc 3 có 2 cực trị ⇔ b^2 – 3ac > 0

                              Đối với cực trị của hàm số bậc bốn

                              cho hàm số: y = ax^4 + bx^2 + c (a ≠ 0) có đồ thị là (c). khi đó, ta có: y’ = 4ax^3 + 2bx; y’ = 0 ⇔ x = 0 hoặc x^2 = -b/2a.

                              • (c) có một điểm cực trị y’ = 0 có 1 nghiệm x = 0 ⇔ -b/2a ≤ 0 ⇔ ab ≥ 0.

                              • (c) có ba điểm cực trị y’ = 0 có 3 nghiệm phân biệt ⇔ -b/2a > 0 ⇔ ab < 0.

                                ví dụ minh họa:

                                tìm m để hàm số y = x3 + mx + 2 có cả cực đại và cực tiểu.

                                hướng dẫn giải:

                                ta có: y’ = 3×2 + m → hàm số y = x3 + mx + 2 có cả cực đại và cực tiểu khi và chỉ khi y’= 0 có hai nghiệm phân biệt. vậy m < 0.

                                một số bài tập tìm cực trị của hàm số tự luyện

                                Đáp án của các bài tập trên lần lượt là: 1a; 2d; 3a; 4a; 5a; 6a; 7d; 8d; 9d; 10b; 11c.

                                trên đây là tất cả các kiến ​​​​thức về cực trị của hàm số mà monkey muốn chia sẻ đến bạn đọc. hy vọng rằng bài viết này sẽ giúp ích cho bạn phần nào việc ôn tập cho các kỳ thi sắp tới. xin được đồng hành cùng bạn!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *